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Abstract

Global gridded crop models (GGCMs) combine agronomic or plant growth models with

gridded spatial input data to estimate spatially explicit crop yields and agricultural externali-

ties at the global scale. Differences in GGCM outputs arise from the use of different biophys-

ical models, setups, and input data. GGCM ensembles are frequently employed to bracket

uncertainties in impact studies without investigating the causes of divergence in outputs.

This study explores differences in maize yield estimates from five GGCMs based on the

public domain field-scale model Environmental Policy Integrated Climate (EPIC) that partici-

pate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the

same crop model, the GGCMs differ in model version, input data, management assump-

tions, parameterization, and selection of subroutines affecting crop yield estimates via culti-

var distributions, soil attributes, and hydrology among others. The analyses reveal inter-

annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sen-

sitive to soil parameterization and crop management. All GGCMs show an intermediate
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performance in reproducing reported yields with a higher skill if a static soil profile is

assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains

for two EPIC-based GGCMs shows that GGCM performance and plant stress responses

depend substantially on soil parameters and soil process parameterization, i.e. hydrology

and nutrient turnover, indicating that these often neglected domains deserve more scrutiny.

For agricultural impact assessments, employing a GGCM ensemble with its widely varying

assumptions in setups appears the best solution for coping with uncertainties from lack of

comprehensive global data on crop management, cultivar distributions and coefficients for

agro-environmental processes. However, the underlying assumptions require systematic

specifications to cover representative agricultural systems and environmental conditions.

Furthermore, the interlinkage of parameter sensitivity from various domains such as soil

parameters, nutrient turnover coefficients, and cultivar specifications highlights that global

sensitivity analyses and calibration need to be performed in an integrated manner to avoid

bias resulting from disregarded core model domains. Finally, relating evaluations of the

EPIC-based GGCMs to a wider ensemble based on individual core models shows that

structural differences outweigh in general differences in configurations of GGCMs based on

the same model, and that the ensemble mean gains higher skill from the inclusion of struc-

turally different GGCMs. Although the members of the wider ensemble herein do not con-

sider crop-soil-management interactions, their sensitivity to nutrient supply indicates that

findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with

the progressing inclusion of such processes.

Introduction

Over the past decade, global gridded crop models (GGCMs) evolved to become major tools for

agricultural climate change impact assessments [1–8]. They are also employed for studies on

agricultural externalities [9–13] and provide key data for land use change and agro-economic

models [14–17]. Typically, GGCMs are combinations of (a) a core model that estimates crop

yields and externalities of crop production for a given set of input data and (b) a model frame-

work that processes specified input data and runs the core model over large regions or the

globe based on computational interfaces and georeferenced data from earth observations, sta-

tistical databases, or modelers’ assumptions. Most often, core models are based either on eco-

systems models adapted for representing cropping systems or on field-scale crop models with

varying level of detail in agro-environmental or management processes.

Despite their wide use and substantial deviations among studies based on single GGCMs

(e.g. [2,11]), there is little insight regarding actual drivers behind these uncertainties, which

can be grouped into simulated processes, process algorithms, input data, and parameterization

including management assumptions. Field-scale crop models themselves have been subject to

a wide range of uncertainty analyses ranging from crop yield and biomass performance [18]

including in-season dynamics [19] to soil organic matter (SOM) spin-up [20], static or tran-

sient soil handling [21,22], and trial management [23]. Since the inception of the Agricultural

Model Intercomparison and Improvement Project (AgMIP, [24]) these experiments are fre-

quently carried out for crop model ensembles.

Past uncertainty analyses for GGCMs or large-scale crop models in contrast have mostly

addressed GGCMs’ sensitivity to input data from different sources for climate (e.g. [2,11,25])
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and soil (e.g. [26–28]), spatial resolution of input data (e.g. [29,30]), and deviations in outputs

from different core models within the same framework ([28,30]). More recently, also core

model subroutines have come under scrutiny, for example PET estimation methods [31], tem-

perature response functions [32], and the parameterization of soil processes relating to land

degradation at the regional scale [33]. In a recent GGCM ensemble study, Müller et al. [7]

attributed shares of overall deviations in ensemble climate impact projections and found that

the selection of GGCMs contributed the majority of overall uncertainty, at least when the

effects of CO2 fertilization are accounted for.

Most prior studies targeting sources of uncertainty, however, have been performed for sin-

gle GGCMs and typically for one singled out core model component. This provides thorough

understanding of the considered components and their importance within a given GGCM and

setup. Yet, it has previously not been investigated how assumptions on parameterizations and

management–for which at present only limited data exist at the global scale—vary across

GGCMs developed by different research groups, how single domains of GGCM setups inter-

act, and how these translate into differences in GGCM outputs and performance. We present

here a first evaluation of drivers in differences among yield estimates produced by a GGCM

ensemble with a focus on setup configurations. Simulations were performed within AgMIP’s

Global Gridded Crop Model Intercomparison (GGCMI) initiative phase 1 [34] in which

GGCMs have been forced with their default or partly harmonized input data. The ensemble

considered herein consists of 12 members (Table A in S1 File), five of which are based on the

field-scale model Environmental Policy Integrated Climate (EPIC), while the remainder has

unique core models. This allows for an in-depth evaluation how setup-related uncertainties

translate into differences in GGCM outputs within the EPIC-based sub-ensemble and to assess

how this sub-ensemble compares to the wider ensemble.

While other ensemble members have more complex routines for plant growth and yield

formation processes (Table A in S1 File; [23]), EPIC presently stands out in its detailed repre-

sentation of soil processes including organic matter and nutrient cycling, hydrology, and ero-

sion as well as impacts of tillage on soil properties, besides being the only core model in

GGCMI phase 1 used in multiple GGCMs. EPIC provides options for tracking changes in soil

properties transiently or to reinitialize soils each year. This enables to account for temporal

variations in soil quality or to focus on plant growth process with limited impact of dynamics

in soil properties. Both options are employed in the ensemble based on modelers’ preferences.

Further differences arise from the selection of subroutines for hydrologic processes, cultivar

distributions, management assumptions, and process parameterization.

In most of the ensemble’s other GGCMs, detailed soil representations are absent as of now

or soils are reinitialized annually. Still, few ensemble members such as APSIM- and DSSAT-

based GGCMs [35–38] consider some of them in principle. Others have implemented tran-

sient dynamic soil routines and tillage operations affecting these in more recent versions not

include in this experiment, as is the case for LPJmL and LPJ-GUESS [39–41]. Detailed soil pro-

cesses are being implemented in other branches of ORCHIDEE (e.g. [42]) from which they

may be transferred to the crop version. Beyond the present ensemble, various gridded crop

models with detailed crop-soil-management interactions based on field-scale core models

such as DNDC, Expert-N, MONICA, or STICS have been developed for regional studies (e.g.

[43]), to which the same uncertainties apply.

This renders the present ensemble timely for the evaluation of differences in GGCM setups

including the parameterization of agro-environmental processes and management assump-

tions, which we hypothesize to greatly affect GGCM outputs and performance. Furthermore,

it allows to assess how such differences in setups relate to differences among core model for-

mulations that entail substantial differences from inclusion and conceptualization to

Parameterization-induced uncertainties and setup harmonization in global crop models
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implementation of plant growth and agro-environmental processes. Through focusing the

analysis on a single core model EPIC, it is possible to concentrate on the effects of different

plausible setups whilst holding model structure constant, allowing comparison with a wider

ensemble where both setup and structure vary. The knowledge gained from the analyses can

inform both modelers and the wider scientific community, making use of the publicly available

data (e.g. [44–48]), about the magnitude of process- and parameterization-induced uncer-

tainty across highly distinct setups and the importance of specific setup domains.

The overarching aim of the study is to evaluate sources of uncertainty in maize yield esti-

mates among the five EPIC-based GGCMs and to compare differences within this sub-ensem-

ble to the wider ensemble. Specifically, the objectives are to

(a) identify key assumptions and setup components that drive differences in yield estimates,

(b) derive priorities for further improvements in GGCM input data and harmonization, and

(c) assess how findings for the sub-ensemble relate to a wider ensemble of different core

models.

Complementary, a detailed evaluation is conducted for two EPIC-based GGCMs by step-

wise introducing aggregated setup domains from one into the other in order to examine the

importance of cultivar setups, organic matter turn-over and nutrient cycling, hydrologic

parameterization, soil parameterization and handling, and crop management.

Methods and data

Global gridded crop models participating in this study

A total of 14 GGCMs contributed simulation outputs to GGCMI phase 1 [34], 12 of which pro-

vided outputs with harmonized input data (see next section). Five of the GGCMs (EPIC-BOKU,

EPIC-IIASA, EPIC-TAMU, GEPIC, and PEPIC) are based on the field-scale model EPIC, while

the remainder differs in core plant growth models. This study focuses on the five EPIC-based

GGCMs, while the seven non-EPIC-based GGCMs are included in the Supplementary Informa-

tion and Discussion to put the EPIC ensemble in a wider context, one of them only in the evalu-

ation of model intercorrelation. Table A in S1 File provides an overview of key GGCM

characteristics concerning plant growth, yield formation, and soil processes. More detailed

information are provided on the website of ISI-MIP (http://www.isimip.org) and in Müller

et al. [49,50]. In the further text, the term “model” refers to the core model routines and hence

the structural differences, and the term “GGCM” to the global crop model framework, which

may—as in the case of the EPIC-based GGCMs—only differ in setup and configuration.

Crop management scenarios

Six crop management scenarios (Table 1) were simulated to allow for quantifying differences

among GGCMs from assumptions on management. Three different harmonization setups on

growing season (planting and harvest dates) and nutrient supply (default, fully harmonized,

harmonized & sufficient nutrients) were combined with two water management scenarios:

rainfed only and sufficiently irrigated using automatic irrigation scheduling based on water

deficit. Parameterizations—except for the cumulative temperature requirement to reach matu-

rity (see next section), which were adjusted according to the growing season setup of each

management scenario—were not altered among scenarios to allow for evaluating the impacts

of data harmonization alone.

The default scenario represents each research group’s assumptions on annual fertilizer

application rates and growing seasons (see Text C in S1 File for EPIC-based GGCMs). It serves

Parameterization-induced uncertainties and setup harmonization in global crop models
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for evaluating differences among GGCMs if only climate data are harmonized. The fully har-

monized (fullharm) setup allows for identifying remaining differences if annual nutrient appli-

cation rates and growing seasons are harmonized using the input data described below. The

fully harmonized setup with sufficient nutrient application (harm-suffN, referred to as harm-

non in the simulation protocol [34]) aims to virtually eliminate plant nutrient deficits and con-

sequently impacts of soil nutrient dynamics. This minimizes differences among GGCMs

resulting from the setup of fertilizer application and soil nutrient cycling. As EPIC-TAMU was

first setup in the course of this project, its default and fullharm setups are identical. To allow

for evaluating the effect of harmonization from the default to the fullharm setups for the other

EPIC-based GGCMs, supplementary results are shown with exclusion of EPIC-TAMU. This is

also the case for LPJmL and LPJ-GUESS of the wider ensemble included in supplementary

evaluations.

The Environmental Policy Integrated Climate (EPIC) model

The EPIC model was first developed in the 1980s to assess the impacts of soil management on

crop yields [53]. It has since been updated frequently to cover e.g. effects of elevated atmo-

spheric CO2 concentration on plant growth [54], detailed soil organic matter cycling [55,56],

and an extended number of crop types and cultivars [57,58] among others [59]. The presently

publically available version is EPIC v.0810.

EPIC estimates potential biomass increase on a daily time-step based on light interception

and conversion of CO2 to biomass. Plant growth and phenology are calculated based on the

daily accumulation of heat units. Potential biomass increase is constrained by water and nutri-

ent (nitrogen (N) and phosphorus (P)) deficits, adverse temperature, and aeration stress. On

each day of the crop growth period, the potential biomass gain is adjusted by the major plant

growth-regulating factor to obtain the actual biomass increment. Hence, only one stress factor

limits biomass accumulation on a given day. Root growth can be limited by soil strength,

adverse soil temperature, and aluminum toxicity. At maturity, the model calculates crop yield

based on above ground biomass and an actual harvest index HIa, which is estimated within a

range given by potential HI (HImax) and minimum HI under water stress (HImin).

Besides plant growth and yield formation, EPIC estimates a wide range of environmental

processes, for example wind and water erosion rates, turnover and partitioning of organic mat-

ter (OM) based on the CENTURY model [55,60], mineral N and P cycling, evapotranspiration

(ET), fluxes of selected gases, and soil hydrologic processes. All of these have feedbacks on

Table 1. Crop management scenarios based on Elliott et al. [34]. The default setup represents each modelling group’s own assumptions, input data and management

parameters. The harmonized scenarios use the same growing season data [51] and the same annual application rates for N and P [52] (fullharm) or sufficient nutrient sup-

ply (harm-suffN) to avoid nutrient-related plant growth limitations. See Fig E, panel a,b in S1 File for maps of harmonized N and P application rates.

Name Abbreviation Irrigation vol.

[mm]

N

[kg ha-1]

P

[kg ha-1]

Growing season dates

Default, irrigated default sufficient individual1) individual1) individual1)

Default, rainfed - individual1) individual1) individual1)

Fully harmonized, irrigated fullharm sufficient harmon.2) harmon.2) harmon.3)

Fully harmonized, rainfed - harmon.2) harmon.2) harmon.3)

Harmonized & suff. nutrients, irrig. harm-suffN sufficient sufficient sufficient harmon.3)

Harmonized & suff. nutrients, rainfed - sufficient sufficient harmon.3)

1) Based on each research group’s assumptions and data
2) Harmonized fertilizer application rates based on Mueller et al. [52] processed as described in Elliott et al. [34]
3) Harmonized growing season data based on Sacks et al. [51] with gap filling as described in Elliott et al. [34]

https://doi.org/10.1371/journal.pone.0221862.t001
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plant growth, mainly through nutrient and water availability. EPIC has one central plant

growth module, but provides various subroutines for calculating several of the externalities,

e.g. six methods for water erosion estimation, eleven methods for estimating field capacity

(FC) and wilting point (WP) including static input of own estimates or data, and five options

for potential evapotranspiration (PET) among others. While this allows for adjusting the

model to site conditions for which one method may be more appropriate than the other, it

introduces another dimension of uncertainty besides the numeric parameterization of pro-

cesses itself. Further information on relevant subroutines are provided in Text A in S1 File.

Parameterizations of the EPIC-based global gridded crop models

Selection of global parameters. All EPIC-based GGCMs except EPIC-TAMU use EPIC

v.0810 as the core model. EPIC-TAMU uses the experimental version v.1102, which has addi-

tional routines mainly for OM and nutrient cycling, but the same plant growth module. As

shown in Text B (S1 File), EPIC v.1102 produces virtually identical outputs in high-input

regions but shows differences in low-input agriculture where nutrient cycling has larger

impacts on plant growth. It may hence be considered another configuration of EPIC in this

context.

All EPIC-based GGCMs have been applied in prior studies except EPIC-TAMU, which has

first been set up in the course of this project. Based on prior applications or modellers’ parame-

ter estimates suitable for global simulations, the EPIC-GGCMs differ substantially in their

parameterization and selection of subroutines. E.g. GEPIC has earlier been set up for repro-

ducing small-holder agriculture in sub-Saharan Africa [61], relying partly on parameters cali-

brated in West Africa [58] whereas EPIC-IIASA has frequently been applied in high-input

regions such as the EU [62] or China [63]. Yet, modelling purposes and target regions may

change over time with ongoing research and parameterizations herein are accordingly results

of both earlier research and modellers’ assumptions on globally representative settings. Out-

lines of EPIC-based GGCM setups, purposes, and prior applications are provided in Text C

(S1 File). Table 2 gives an overview of the setups and parameterizations grouped by hydrology,

soil degradation, OM and nutrient cycling, crop management, and crop growth apart from

cultivar definitions, which are described in the subsequent section.

Numbers in parentheses below refer to column “No” in the table. As there are interactions

among core model processes such as hydrology and OM cycling, this grouping is tentative and

partly owed to the model structure. Concerning the choice of major subroutines, three

GGCMs use Penman-Monteith (PM; [64]) for PET estimation (1) and two Hargreaves (HG;

[65]) in different parameterizations. Only EPIC-IIASA uses prior estimated FC and WP

parameters (9) while all other EPIC-based GGCMs estimate these parameters using Rawls

method online ([66]). Water erosion (14) is considered in two of the GGCMs (and wind ero-

sion in an additional one) with deviations in estimation method (16) and scaling of sediment

yield (15). Three EPIC-GGCMs have a dynamic soil profile (19) with transient updating of

profile depth, texture, OM, nutrient pools, and hydrology. In the two GGCMs with static soil

profiles, soil texture and OM are re-initialized at the beginning of each year, but not mineral

nutrient pools and soil humidity. All GGCMs are run transiently (20), except for GEPIC,

which is run for each decade separately with a spin-up of 30 years (see Text C in S1 File). All

three methods available for estimating denitrification (21) are used in the EPIC-based ensem-

ble. Numeric parameters agree in some cases among GGCMs, especially if default parameter

values have been selected (e.g. microbial decay rate (22)), but differ in several cases among

four to five EPIC-GGCMs as is the case for the N volatilization coefficient (26). Different val-

ues have also been selected for defining irrigation water and fertilizer application strategies

Parameterization-induced uncertainties and setup harmonization in global crop models
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Table 2. Differences in parameters and choice of subroutines for the participating EPIC-based GGCMs. A dash indicates that the parameter is not relevant for the

respective GGCM due to selection of subroutines. A brief explanation of parameters is provided in Table B in S1 File.

No Parameter EPIC-BOKU EPIC-IIASA EPIC-TAMU GEPIC PEPIC

Hydrology

1 PET estimation method1) PM HG PM HG PM

2 Hargreaves exp. coefficient - 0.6 - 0.5 -

3 Hargreaves linear coefficient - 0.0023 - 0.0032 -

4 Soil evaporation-cover coefficient 0 0 0.15 0 0

5 Soil cover-temperature function2) 1,30

8,95

1,30

8,95

1,05

3,95

1,30

8,95

1,30

8,95

6 Soil evaporation coefficient 2.5 1.5 2.5 2.5 1.5

7 Soil evaporation-depth function2) 10,50

100,95

10,50

100,95

10,70

100,95

10,50

100,95

10,50

100,95

8 Plant water use-soil water tension function2) 100,01

1000,90

100,01

1000,90

500,01

1500,50

100,01

1000,90

100,01

1000,90

9 FC, WP, and Ksat estimation3) Rawls static Rawls Rawls Rawls

10 Soil variable dependence of CN4) SMI depth depth SMI SMI

11 CN number index coefficient 1.5 1.2 1 0.5 1

12 CN coefficient for standing dead residue 0.0 0.0 0.3 0.2 0.0

Soil degradation

13 Wind erosion considered5) no no yes yes yes

14 Water erosion considered 5) no no no yes yes

15 Water erosion conservation practice6) - - - 0.5 1.0

16 Water erosion estimation method7) - - - MUSS RUSL2

17 Field length for wind erosion - 2.00 1.00 1.24 2.00

18 Field width for wind erosion - 2.00 1.00 0.62 2.00

19 Soil profile handling (static/dynamic)8) stat. stat. dyn. dyn. dyn.

20 Simulation continuity (transient/decadal)9) trans. trans. trans. dec. trans.

Organic matter and nutrient cycling

21 Denitrification method10) EPIC CI AK AK AK

22 Microbial decay rate 1.0 0.8 1.0 1.0 1.0

23 Slow to passive humus coefficient 0.05 0.05 0.003 0.05 0.05

24 Oxygen content-soil depth function2) 200,05

500,90

400,05

600,90

200,05

500,90

200,05

500,90

200,05

500,90

25 Oxygen coefficient for microbial activity 0.90 0.99 0.80 0.90 0.90

26 N volatilization coefficient 0.005 0.700 0.030 0.005 0.300

Crop management

27 Automatic irrigation trigger 0.90 0.80 0.99 0.90 0.90

28 Maximum single water application [mm] 50 500 100 1000 500

29 Automatic fertilizer application trigger11) 0.90 0.80 0.99 0.90 -

Crop growth

30 Coefficient allocating root growth 0.5 0.5 0.7 0.5 0.5

31 Coefficient for root growth dist. by depth 10 10 7 10 10

32 Root growth stress considered no no yes no no

(Continued)
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(27–29), and EPIC-TAMU differs in addition from the other GGCMs in the parameterization

of selected plant growth process (30–33).

Geographic distributions and parameterization of maize cultivars

Differences in parameterizations of crop cultivars are evaluated here based on the parameters

HImin, HImax, and optimal temperature ranges only. The latter is defined as the base and maxi-

mum temperatures for plant growth (see Text A, i.e. eq. S1 and S5, in S1 File). Although poten-

tial heat units (PHU), the temperature sum to reach maturity (Text A in S1 File), are an

important cultivar characteristic as well, they are typically prescribed in GGCMs by growing

season input data and long-term climate in each grid cell in order to meet reported sowing

and harvest dates [61]. Between one and four different maize cultivars were planted within

each EPIC-GGCM (Fig 1; Table D in S1 File). EPIC-IIASA uses four cultivars in its default

setup (Fig 1A) that are attributed to major world regions based on climatic and economic

Table 2. (Continued)

No Parameter EPIC-BOKU EPIC-IIASA EPIC-TAMU GEPIC PEPIC

33 Fraction of growing season from which HImin affects yield formation 0.50 0.50 0.45 0.50 0.50

1) PM: Penman-Monteith; HG: Hargreaves
2) Parameters 5,7, 8, and 24 are X and Y values (separated by commas) for two points (upper and lower pairs) defining the shape of sigmoid functions
3) Field capacity (FC) and wilting point (WP) can be estimated by 11 different methods or be an input in soil files. Saturated hydraulic conductivity (Ksat) can be

estimated according to Rawls method or be input. For EPIC-IIASA these parameters were estimated based on the ROSETTA model as described in Text C (S1 File).
4) Describes the dependence of curve number (CN) estimation on soil moisture, which can be based on five methods, among them soil moisture gradient with profile

depth or calculation of a daily soil moisture index (SMI)
5) Water and wind erosion can be turned on or off and water erosion is estimated by different methods (see below)
6) Water erosion rates are lowered by the given fraction (0 corresponds to virtually eliminated water erosion, 1 to no erosion control)
7) MUSS: Modified Universal Soil Loss Equation for Small Watersheds; RUSL2: Modified Revised Universal Soil Loss Equation
8) Static: annual re-initialization of soil profile, except water content and mineral nutrients; dynamic: transient updating of soil parameters throughout simulation
9) GEPIC is run separately for each decade as described in Text C (S1 File)
10) EPIC: original EPIC method [53]; CI: Cesar Izaurralde method [56]; AK: Armen Kemanian method (unpublished)
11) The auto-fertilizer and irrigation triggers define at which stress level fertilizer or water are being applied. E.g., a value of 0.8 for the auto-fertilizer trigger implies that

fertilizer is applied on a given day if potential biomass production would be limited by >20%. PEPIC employs rigid timing of N fertilizer application and has

accordingly no threshold.

https://doi.org/10.1371/journal.pone.0221862.t002

Fig 1. Distributions of maize cultivars in the EPIC-based GGCMs. (a) EPIC-IIASA, (b) EPIC-TAMU, (c) GEPIC

and PEPIC, and (d) EPIC-BOKU. Differences in the parameterization of each cultivar are provided in Table D in S1

File. Numbers in parentheses (1–4) are used throughout the text to refer to the cultivars.

https://doi.org/10.1371/journal.pone.0221862.g001
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characteristics. In the harmonized setup scenarios, cultivars 1 and 3 were merged as growing

season length was defined according to common input data sets. EPIC-TAMU (Fig 1B) plants

high- and low-yielding varieties. The latter is assigned to countries in which maize yields have

stagnated or decreased within the past decades according to Ray et al. [67]. The high-yielding

variety is assigned to all other regions. The same two maize cultivars were distributed in

GEPIC and PEPIC (Fig 1C) based on the human development index (HDI). The high-yielding

variety is planted in all countries with HDI�80, which corresponds to “very high develop-

ment” according to UN classification [68]. EPIC-BOKU used the high-yielding variety in all

grid cells (Fig 1D).

Common input data

Climate forcing data based on the WFDEI GPCC dataset [69] at a spatial resolution of 0.5˚ x

0.5˚ were provided by the ISI-MIP and GGCMI projects. The climate data are based on tem-

perature and solar radiation from ERA-interim [70] and precipitation from GPCC [71]. All

EPIC-based GGCMs used soil data from the ISRIC-WISE database [72] mapped to the Digital

Soil Map of the World [73]. For EPIC-BOKU and EPIC-IIASA, the 5000 soil profiles had been

reduced to the original 120 soil typologic units WISE is based on [74]. Soil hydraulic parame-

ters not provided in the WISE database (FC, WP and saturated conductivity (KS)) were esti-

mated for EPIC-IIASA using the ROSETTA model [75,76] and calculated endogenously in the

other EPIC-based GGCMs using Rawls method (Table 2). Figure C in S1 File shows distribu-

tions of key soil parameters for both GGCMs.

For the harmonized runs, nutrient application rates for N and P were based on crop-spe-

cific mineral fertilizer application rates from [52] combined with N and P embedded in

manure [77]. Harmonized planting dates and growing season lengths were based on Sacks

et al. [51], complemented by gap filling with data from the MIRCA2000 dataset [78] and

LPJmL [79]. Both datasets were provided by the GGCMI project [34]. Default runs were car-

ried out using individual fertilizer and growing season data within each GGCM.

Permutation of setup domains for GEPIC and EPIC-IIASA

To assess the importance of single data and parameterization domains within the

EPIC-GGCMs, aggregated parameter domains of EPIC-IIASA were step-wise introduced into

GEPIC. Parameters and routines were grouped into the six domains (Table 3) of cultivar dis-

tribution (Cult), soil parameterization (SoilD), soil handling (SoilP), nutrient turnover-related

coefficients (CoeffN), hydrologic coefficients (CoeffW), and crop management (Manage). The

two GGCMs were selected because yield simulations have no trend in time (Fig 2) and there

are substantial differences in their setups (Table 2).

GEPIC was run with all 64 (26) resulting setup combinations using the land mask of EPI-

C-IIASA to ensure consistency. The evaluation focuses on rainfed yield estimates as these

cover the whole range of uncertainty impacts. Magnitudes of plant growth stresses are

included to analyze drivers behind different yield estimates. Benchmarking against reported

yields at the country-level serves for quantifying the contribution of single setup domains to

GGCM performance besides the GGCM’s sensitivity for a given setup domain in contrasting

countries.

Evaluation and reference data

Yield aggregation. Crop yields are compared and evaluated at the global, national, and

grid level as well as aggregated to Koeppen-Geiger regions (Fig D in S1 File). Agreement
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among GGCMs is compared in relation to fertilizer application rates, mean annual precipita-

tion (MAP), and cultivar distributions to identify drivers of deviations in yield estimates.

Global and national average yields (YDav) were calculated from simulated rainfed and irri-

gated yields in each grid cell and the respective rainfed and irrigated harvested areas obtained

from the MIRCA2000 dataset [78], which provides rainfed and irrigated areas for various

Fig 2. Global average area-weighted maize yield estimates of five EPIC-based GGCMs. (a) default, (b) fully

harmonized (fullharm), and (c) fully harmonized with sufficient nutrient supply (harm-suffN) management scenario

(Table 1). Reported yields are based on FAOSTAT [85] and have been detrended (see Methods). The black dashed line

represents the ensemble mean. The grey ribbon shows the 95% confidence interval of the ensemble mean. Table F in

S1 File hows statistical coefficients of yield trends over time and ME relative to FAO reported yields. Corresponding

linear regressions are displayed in Fig F in S1 File.

https://doi.org/10.1371/journal.pone.0221862.g002

Table 3. Composition of aggregated setup domains the comparison of GEPIC in EPIC-IIASA in the fully harmonized (fullharm) scenario (Table 1). Numbers in

the first column are used in selected figures to keep annotation short, otherwise the abbreviation is used. Numbers in column “Parameters considered” refer to those in

Table 2. When referencing the setup domain parameterizations from each GGCM, e = EPIC-IIASA and g = GEPIC (e.g. eCult refers to cultivar setup of EPIC-IIASA).

No Setup domain and abbreviation Parameters considered Effect in the EPIC model

1 Cultivars

(Cult)

• see Fig 1 for distribution of cultivars and Table D in

S1 File for differences in cultivar parameterization

• scaling of yields based on potential HImax

• higher sensitivity to water stress with lower HImin

• temperature ranges for optimal crop growth

2 Soil parameterization

(SoilD)

• Table 2: 9

• differences in hydrologic soil group definitions

• sum of bases and saturated conductivity only in

EPIC-IIASA soil files

• ten soil layers in EPIC-IIASA

• five soil layers in GEPIC

• soil hydrology

• nutrient cycling

• little difference in basic soil properties (see Fig C in S1 File)

3 Soil handling

(SoilP)

• Table 2: 13–20

• decadal runs with dynamic soil handling in gSoilP

(Fig B in S1 File)

fully transient runs with static soil profile in eSoilP

• carry-over effects in transient runs but re-initialization of soil

texture, depth and OM for EPIC-IIASA setup

• carry-over effects for all soil variables including losses from

erosion transient for each decade with 30yr spin-up (see Text C in

S1 File)

4 Parameterization of organic

matter and nutrient cycling

(CoeffN)

• Table 2: 21–26 • nutrient fate and availability

• e.g. denitrification, microbial mineralization, partitioning to OM

pools

5 Parameterization of hydrologic

processes

(CoeffW)

• Table 2: 2, 3, 6, 10, 11, 12 • PET estimation

• runoff and percolation

• plant water deficit

• indirectly OM and nutrient cycling

6 Crop management

(Manage)

• Table 2: 27–29

• a list of crop management operations in both

GGCMs is provided in Table C in S1 File

• short- and long-term nutrient availability

• surface roughness and soil erodibility

• potential biomass estimation

https://doi.org/10.1371/journal.pone.0221862.t003
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crops around the year 2000, according to

YDav;c ¼

Xm

g¼1
½YDi;g �HAi;g þ YDr;g � HAr;g �
Xm

g¼1
½HAi;g þHAr;g �

ð1Þ

where YDav,c is the national average yield in country c, YDi,g is yield under irrigated conditions

in grid cell g, YDr,g is yield under rainfed conditions in grid cell g, HAi,g is irrigated area in grid

cell g, and HAr,g is rainfed area in each grid cell g, and m is the number of grid cells in country

c. We acknowledge the uncertainty introduced from spatial aggregation [80] but as the focus is

on a comparison among GGCMs, we consider this to be of minor importance here.

Metrics for GGCM agreement. The coefficient of variation (CV) [%] was used as a metric

for absolute bias among yields averaged throughout the study period (CVav) as well as changes

in inter-annual yield dynamics if GGCM setup components are introduced from GEPIC into

EPIC-IIASA (CVt). The coefficient of variation is expressed as

CV ¼
S
�X
� 100% ð2Þ

where S is the standard deviation and �X is the mean of yields throughout the evaluation period

in each grid cell or globally aggregated. CVav was calculated for the period 1980–2009 as the

first simulation year 1979 did not have a complete growing season globally. CVt was calculated

the same way but after scaling the time series average to 1 in order to avoid bias caused by

changes in the magnitude of yields.

The mean error (ME) was used in the same evaluations as a metric for absolute bias includ-

ing the sign of change:

ME ¼

Xn

i¼1
YDest � YDref

n
ð3Þ

where YDest is the yield estimate, YDref is the reference yield, and n is the number of years con-

sidered. In the permutation of GGCM setup domains (Table 3) difference are evaluated in rela-

tive terms compared to the original EPIC-IIASA setup. ME hence corresponds there to the

fraction of relative change [–].

To test the agreement in inter-annual yield variability among GGCMs, we used the time-

series correlation [34,49] according to Pearson’s correlation coefficient r calculated for yield

time-series in each grid cell pairwise among all GGCMs according to

r ¼

Xn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � �xÞ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðyi � �yÞ2

r ð4Þ

where n is the sample size, xi‥n and yi‥n are paired samples of yield estimates from two

GGCMs, xi and yi are the ith elements of each total sample, and �x and �y are the sample means.

As one of the EPIC-based GGCMs exhibited a substantial decline in yields after the first simu-

lation years, the evaluation period was limited to 1980–1990 in the GGCM inter-comparison

in order to avoid bias from unexpected model behavior later in the simulation period.

All evaluations were carried out with the statistics software R [81] using the packages

ggplot2 [82], corrplot [83], and the heatmap.2 function of gplots [84] in a modified version

from Müller et al. [49] for visualization.
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Benchmark metrics for reproducing reported yields. Skills of the ensemble with respect

to reproducing reported inter-annual yield variability and absolute yields have been assessed

in detail in Müller et al. [49] across various sets of benchmark, land use, and climate data. Due

to uncertainties inherent also in benchmark and land use data (see below), the performance

evaluation herein does not aim at identifying an ensemble member performing optimally at

global or regional scales. Rather, it serves for comparing skills of GGCMs in relation to differ-

ences in setups, i.e. the number of countries in which a specific GGCM shows high perfor-

mance or how performance changes with permutation of model setup domains. Thereby, we

focus on the two harmonized management scenarios fullharm and harm-suffN to ensure com-

parability in key input data.

Following the methodology of Müller et al. [49], we used time-series correlation coefficient

r (Eq 4) between detrended national average simulated and reported yields as the main metric.

Reported national and global average yields were obtained from FAOSTAT [85]. Detrending

was performed in order to remove temporal trends in reported yields due to changes in tech-

nology and management by subtracting the 5-year moving mean [34,49]. As a reference, the

detrended yields from FAOSTAT were multiplied by their mean of the period 1997–2003 for

which fertilizer inputs are representative. The comparison of reported versus simulated global

and national yields was performed for the complete simulation period 1980–2009. A signifi-

cance threshold of p<0.1 (at approx. r>0.31) was selected for defining good performance

compared to reported yields. The mean bias in absolute yield estimates from reported yields

was measured as mean error (Eq 3).

The evaluation of GGCM performance itself is often limited by the quality of benchmark

[49] and land-use data [80], characteristics of climate data (Ruane et al., in preparation), and

representativeness of management data for a given region. Benchmarking itself is hence sub-

ject to substantial uncertainties and was here limited to major producers and other countries

for which available benchmark and management data can be considered representative. These

were selected based on whether (a) production and harvest area data had not been estimated

by FAO and (b) harvested area did not fluctuate by>100% throughout the study period to

account for the static cropland mask used in the aggregations.

Results

Effects of harmonization on global average maize yield estimates

If the EPIC-based GGCMs are run in their default setups, global average simulated maize

yields differ by up to 124% annually (mean 95%) using the lowest estimate as a reference (Fig

2A; Table E in S1 File). This is mainly due to very high yield estimates from EPIC-BOKU of

around 8 t ha-1, while the other EPIC-based GGCMs have yield estimates of around 4–6 t ha-1.

The ranges decrease to 55% if harmonized planting dates and fertilizer application rates are

used (Fig 2B) and further to 26% with sufficient nutrient supply (Fig 2C). Accordingly, the

bias from reported yields varies greatly by GGCM and scenario with the largest bias in terms

of ME for EPIC-BOKU in the default setup and the lowest for GEPIC in the fullharm scenario

(Table F in S1 File). The mean bias is not constant over time, however, with significant nega-

tive trends in yield estimates for PEPIC in all setup scenarios, and for EPIC-BOKU in the full-

harm and harm-suffN scenarios. EPIC-IIASA in contrast shows a slight positive trend in its

default setup. Still, major inter-annual patterns agree among GGCMs and reported data rea-

sonably well and the whole EPIC-based ensemble reproduces a reported peak in global average

yield in 2004.
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Spatial differences in mean and inter-annual maize yield estimates

Deviations in long-term mean yields. Spatially, the deviation of maize yield estimates

among the EPIC-GGCMs is largest with the default setups in tropical and arid regions (Fig D

in S1 File) with CVav of up to 224% and CVav� 44% in > 50% of all grid cells (Fig 3A and 3B;

Table G in S1 File). The most distinct differences with CVav > 100% were found in sub-Saha-

ran Africa, South America, India, and Southeast Asia. The smallest differences occur in mid

and high latitudes of both hemispheres, where (a) fertilizer inputs are at moderate or high lev-

els (Fig E in S1 File), (b) most GGCMs plant the same high-yielding cultivar (Fig 1) and (c) the

climatology usually defines a narrow growing season window limiting differences among

GGCMs in planting date assumptions. Rainfed cultivation results in larger differences among

GGCMs in (semi-)arid regions of Central and West Asia, the Western USA and Northeastern

Brazil. If irrigation water is applied, differences increase in most parts of sub-Saharan Africa

and Central India, but decrease in most of North and South America, Central Asia, and

Europe.

Harmonizing fertilizer and growing season data reduces CVav to�62% under rainfed and

�54% under irrigated conditions in 75% of all grid cells (Fig 3C and 3D; Table G in S1 File).

Spatial patterns remain similar to those found for the default managements, but CVav also

increases substantially in few regions after harmonization such as Western Russia or Southern

China. The application of sufficient nutrients further reduces differences among

EPIC-GGCMs (Fig 3E and 3F). Agreement improves especially in regions with low or moder-

ate reported fertilizer application rates (see Fig E in S1 File) such as India, sub-Saharan Africa,

and South America, but higher CVav compared to the default setups remains in Western Rus-

sia and Southern China. Excluding EPIC-TAMU, for which missing default simulations have

been replaced by the fullharm setup, from the analysis results in comparable spatial patterns

(Fig G in S1 File), lower CVav in the lower percentiles, and higher CVav in the upper percen-

tiles except for the maximum value (Table H in S1 File).

In the regions with increased CVav in the harmonized setups, different mechanisms are at

play. Selecting an administrative unit from each of the two regions (Fig I in S1 File) indicates

that in the province Hunan (China), yields decrease uniformly for all EPIC-based GGCMs,

Fig 3. Coefficient of variation for long-term average maize yield estimates (CVav) among EPIC-based GGCMs.

Panels reflect each of the six crop management scenarios defined in Table 1. Complementary maps without

EPIC-TAMU, for which default and fullharm are identical, are provided in Fig G in S1 File.

https://doi.org/10.1371/journal.pone.0221862.g003
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except EPIC-TAMU which has identical default and fullharm setups, leaving the absolute dif-

ference constant but increasing the CVav value. The fact that there is little difference between

the fullharm and harm-suffN setups and higher yields in the default scenario indicates that the

harmonized growing season, which refers to a side season at the end of the year with low pre-

cipitation and 129 days until harvest (not shown), drives the yield decrease. In the oblast Kras-

nodar (Russia), GGCM responses to harmonization are more diverse. GEPIC and PEPIC

show a decrease in yields from default to fullharm followed by an increase with harm-suffN,

indicating a partial impact of nutrient supply. Yet, for EPIC-IIASA, which simulates an

adapted cultivar in this region (Fig 1A), yields increase continuously among scenarios. EPIC--

BOKU in turn shows substantial yield reductions in the harmonized setups indicating that suf-

ficient nutrient supply cannot offset yields in this GGCM.

Deviations in inter-annual yield dynamics. In the default setup, the median time-series

correlation coefficient r among the EPIC-based GGCMs is often around zero (Fig 4A and 4B;

see also Fig M in S1 File), except for temperate and cold regions in case of sufficient irrigation

and additionally in arid regions under rainfed conditions. Globally, still>40% of all grid cells

have a median correlation that is statistically significant (r with at least p<0.1, Table I in S1

File) under rainfed conditions, but only 17% with sufficient irrigation. Harmonization pro-

vides often a slight improvement, foremost with a higher correlation in regions that already

had a moderate agreement in the default setups (Fig 4C and 4D). Low agreement prevails espe-

cially in the tropics and along the Eurasian border, where the correlation partly decreases com-

pared to default. With sufficient nutrient supply (Fig 4E and 4F), there is a significant

correlation in 68% of grid cells under both irrigated and rainfed water supply, and a very high

agreement at p<0.01 in 51% or 43%, respectively (Table I in S1 File). The largest deviations

remain in the humid tropics of sub-Saharan Africa and South America, South(-East) Asia, and

along the Eurasian border. Excluding EPIC-TAMU from the analysis results again in similar

spatial patterns (Fig H in S1 File), but a substantially lower fraction of grid cells with a good

median agreement occurs in the harm-suffN scenario (Table J in S1 File).

Impact of fertilizer supply on deviations in maize yield estimates. As indicated by the

cross-scenario analyses above, the bias among GGCMs in terms of CVav is largely driven by

crop nutrient supply. Accordingly, within the fullharm scenario CVav is inversely correlated

Fig 4. Median time-series correlation coefficient r for maize yield estimates among EPIC-based GGCMs. Panels

reflect each of the six crop management scenarios defined in Table 1. Complementary maps without EPIC-TAMU, for

which default and fullharm are identical, are provided in Fig K in S1 File.

https://doi.org/10.1371/journal.pone.0221862.g004
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with the level of N fertilizer supply in most climate regions (Fig 5). Although linear regressions

are highly significant in all climate region x water supply combinations, the explained variance

is substantially higher under irrigated (Fig 5A–5D) than under rainfed conditions (Fig 5E–

5H). CVav is on average at about 60–85% in all climate regions at very low N application levels

and highest in arid regions under irrigated conditions. It decreases on average to about 22% in

arid and temperate and 17% in tropical and cold regions at applications rates above 200 kg N

ha-1 yr-1. Rainfed cultivation substantially dampens the effect of nutrient application rates as a

driver for differences among GGCMs in (semi-)arid climates and leaves larger deviations at

moderate to high application rates also in other climate regions. The large deviation at fertilizer

application rates >300 kg N ha-1 in arid regions under rainfed conditions (Fig 5E) is appar-

ently caused by soil hydrology as indicated by the substantially lower deviation under irrigated

conditions (Fig 5A).

Similarly, the correlation among GGCMs increases with increasing fertilizer application

rates (Fig 6A–6H) especially under irrigated conditions (Fig 6A–6D), but with comparably little

explained variance. The highest impact of fertilizer application can be found in cold and tem-

perate climates under irrigated conditions (Fig 6B and 6C). In arid regions under rainfed condi-

tions, the correlation is often already high at low fertilizer application rates (Fig 6E) implying

that climatic drivers dominate here the GGCM inter-correlation. In the tropics in contrast,

where fertilizer application rates are commonly moderate to low, the correlation is at all applica-

tion rates lower than in other regions (Fig 6D and 6H). Binning the fertilizer application rates

(Fig J in S1 File) shows that there may rather be thresholds of application rates allowing for high

correlation among GGCMs at least in arid, cold and temperate regions where a substantial

increase can be found for the first two at 50–100 kg N ha-1 and for the latter at>150 kg N ha-1.

Again, this occurs foremost with sufficient water supply (Fig J, panel a-d in S1 File).

Impact of cultivar distributions on deviations in maize yield estimates. Besides nutrient

supply, an important driver for remaining differences in spatial mean yield estimates is the

Fig 5. Coefficient of variation for maize yields among EPIC-based GGCMs compared to fertilizer application rates. Results are shown for the fully harmonized

management scenario (fullharm) with sufficiently irrigated (a-d) or rainfed (e-h) water supply in each grid cell of four major climate regions. Linear regressions are limited

to�200 kg N ha-1, which commonly corresponds to sufficient N supply [86].

https://doi.org/10.1371/journal.pone.0221862.g005
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cultivar distribution. If all GGCMs plant one of the high-yielding cultivars 1 or 2, CVav is typi-

cally lowest (Fig K in S1 File). The deviation increases for regions in which all four GGCMs

that use Cultivar 4 plant this variety and is often 50–100% higher than the first option if none

of the cultivars dominates. This applies to regions in which GEPIC and PEPIC but not EPI-

C-IIASA and EPIC-TAMU plant cultivar 4. The effect is stronger under rainfed than under

irrigated conditions. Cultivar distributions can hence also explain some of the remaining dif-

ferences in the harm-suffN scenario (Fig 2E and 2F), e.g. in Western Russia (see above).

The impact on the time-series correlation coefficient is less evident (Fig L in S1 File).

Regardless of the water supply regime and cultivar definitions, the agreement is high in arid

regions with lowest agreement if all GGCMs plant a high-yielding cultivar with irrigation. At

overall lower agreement, the picture is similar in the tropics where it also applies to the mixed

cultivar definitions. Cold and foremost temperate regions in contrast show a gradient in

decreasing agreement among GGCMs from uniform planting of the high-yielding cultivar

towards dominant low-yielding cultivar or mixed cultivar definitions.

Impact of single setup domains on yield deviations

The further evaluation of differences in setup domains between EPIC-IIASA and GEPIC (Fig

7A–7P) focuses on the relative difference from the complete EPIC-IIASA setup (Fig 7A). Com-

plementary magnitudes of plant stresses are provided in the Supplementary Information (Fig

O in S1 File). They cannot be related to differences in yield estimates directly as their impact

depends on estimates of potential biomass growth in the EPIC model (driven e.g. by growing

season length, climate and management; see also Text A, S1 File) and the timing of the stress

occurrence. They are hence addressed per panel but not among different managements.

Selected examples for single grid cells are provided in Figs O and P in S1 File, maps of domi-

nant stresses for contrasting setups in Fig R in S1 File.

Fig 6. Median time-series correlation coefficient r for maize yields among EPIC-based GGCMs compared to fertilizer application rates. Results are shown for the

fully harmonized management scenario (fullharm) with sufficiently irrigated (a-d) or rainfed (e-h) water supply in each grid cell of four major climate regions. Linear

regressions are limited to�200 kg N ha-1, which commonly corresponds to sufficient N supply [86].

https://doi.org/10.1371/journal.pone.0221862.g006
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If only the management is used from the GEPIC setup and everything else is set to the EPI-

C-IIASA setup, yields increase slightly compared to the full EPIC-IIASA setup (Fig 7A) despite

an increase in phosphorus (P) and water (W) deficits (Fig O, panel a in S1 File) and show an

increase in inter-annual yield variability in terms of CVt. This is caused by the narrower row

spacing in GEPIC (Table C in S1 File), which increases the estimate of potential biomass (Text

A in S1 File) often resulting in higher actual biomass estimates despite higher stress occurrence

(see Fig P in S1 File for grid cell example). Replacing also the cultivars scales yields down and

Fig 7. Relative difference in global average rainfed maize yields over a 29 year period for 64 setup combinations. Setup domains are

introduced from GEPIC into the EPIC-IIASA setup (Table 3) and compared to the original EPIC-IIASA configuration. e = EPIC-IIASA,

g = GEPIC, Cult = cultivar definition and distribution, SoilD = soil parameters, SoilP = spin-up and soil handling, CoeffN = organic matter

and nutrient cycling coefficients, CoeffW = hydrologic coefficients, Manage = crop management. CVt = coefficient of variation over time

normalized to mean = 1. ME = mean error compared to the full EPIC-IIASA setup. Corresponding absolute yields are provided in Fig N in S1

File.

https://doi.org/10.1371/journal.pone.0221862.g007
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increases variability as GEPIC plants the low-yielding, drought-sensitive cultivar 4 in a larger

number of countries (Fig 1A and 1C). Introducing the gCoeffN parameters into the setup (Fig

7B) increases yields in all cultivar x management combinations and affects inter-annual yield

dynamics whereas nutrient-related stresses decrease (Fig O, panel b in S1 File) due to more

rapid turnover of organic matter (Table 2; see Fig Q in S1 File for point level example of

eCoeffN vs gCoeffN). The slight increase in temperature (T) stress is hence a secondary effect

due to the stress handling in the EPIC model selecting only the major limiting factor for bio-

mass production on a given day (see Methods). The gCoeffW parameters in turn import little

change on yield variability but slightly scale yields up for each CoeffN parameterization (Fig

7C and 7D).

Replacing in a further step the static soil handling of EPIC-IIASA by the dynamic decadal

runs of GEPIC (Fig 7E–7H) alters yield levels and inter-annual dynamics substantially with

about 15% lower yields than in the corresponding eSoilP scenarios. Nutrient deficits become

the dominant growth constraint, especially in combination with eCoeffN (Fig O, panel e,g in

S1 File), which causes a slower release of nutrients from OM and higher volatilization of N.

The higher P stress with gCoeffN (Fig O, panel f,h in S1 File) is often a secondary effect of high

N availability early in the simulation that causes more rapid P mining form the soil in low-P

input regions and a concomitant increase in P stress.

Introducing in addition the soil parameters of GEPIC gSoilD into the setup combinations

(Fig 7I–7P) results in an increase in yield estimates and changes in inter-annual yield variabil-

ity in all scenarios (Fig 7A–7H vs Fig 7I–7P). This is driven by decreases in N stress and

increases in P stress if a static soil profile eSoilP is employed or if the dynamic soil handling

gSoilP is combined with eCoeffN (Fig O, panel m,o in S1 File). The most significant difference

between the soil parameterizations is in the estimation of hydraulic parameters field capacity

(FC) and wilting point (WP) where EPIC-IIASA has typically higher values for the first and

lower for the latter (Fig C in S1 File). Both parameters affect a wide range of processes in the

EPIC model, among them the threshold for percolation of water and the optimal soil humidity

for microbial processes (see Text A in S1 File). The gSoilD component hence allows for provid-

ing larger amounts of nutrients from OM as required soil humidity is reached earlier, but

causes higher water stress as an effect of (a) lower water storage capacity and (b) higher model

sensitivity to climate stresses caused by higher nutrient supply. In the combination of the static

soil profile eSoilP and the parameter set gCoeffN (Fig 7J and 7L), nutrient stresses are virtually

eliminated and yield estimates are foremost driven by climate (Fig O, panel d; Fig R, panel d in

S1 File), potential biomass accumulation, and cultivar specification.

A correlation matrix of global area-weighted yields among all permutations (Fig S in S1

File) shows that the combination of eSoilD, gSoilP, and eCoeffN (Fig 7E and 7G) has the lowest

agreement with the remainder of setups (Fig S in S1 File). In turn, the nutrient and OM turn-

over parameterizations and soil parameters of GEPIC (gCoeffN and gSoilD) as well as the

static soil handling of EPIC-IIASA (eSoilP) render the GGCM resilient to changes in other

setup domains (Fig T in S1 File), while the remaining setup domains show bimodal distribu-

tions and hence depend more strongly on interactions.

Impacts of setups on GGCM performance

The EPIC-based GGCMs show a mixed performance in the fullharm setups (Table 4). GEPIC

and PEPIC, notably the two GGCMs considering a dynamic soil profile and erosion (Table 2),

exhibit relatively poor skills in terms of countries in which they have best performance. How-

ever, all EPIC-GGCMs have a good performance in about half or more of the countries consid-

ered. If sufficient nutrients are supplied, the numbers of countries in which each GGCM is
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best performing or has at least a high performance, converge to about ±2, except for PEPIC in

the latter case.

For the ten major maize producing countries, substantial variability in GGCM performance

can be observed for both the fullharm (Fig 8A) and the harm-suffN (Fig 8B) scenarios. With

the fully harmonized setup, EPIC-IIASA shows in most cases the best performance, followed

by PEPIC, and finally EPIC-BOKU and GEPIC. All GGCMs show high performance in the

USA and France and low performance for Indonesia or Mexico (see also Table K in S1 File).

With sufficient nutrient supply, the best performing GGCMs change in various countries, pri-

marily those with overall low to moderate time-series correlation, such as Brazil, Indonesia,

and Mexico with decreases in ensemble performance in the latter two (Fig 8B). For some coun-

tries in which at least one GGCM has a high performance in the fullharm scenario, several

EPIC-GGCMs achieve better results with sufficient nutrient supply, i.e. in Argentina and to a

lesser extent in India (Table K in S1 File).

Table 4. Numbers of countries (out of 99 for which benchmark data and GGCM outputs are available) in each

harmonized setup scenario, in which each EPIC-based GGCMs has the highest (column “best”) performance com-

pared against reported yields within the EPIC ensemble and all countries (column “all”) in which the correlation

coefficient is significant at p<0.1 and positive.

Scenario fullharm harm-suffN

GGCM best all best all

EPIC-BOKU 20 56 18 59

EPIC-IIASA 26 56 23 60

GEPIC 15 50 19 58

EPIC-TAMU 23 48 20 61

PEPIC 15 48 19 52

https://doi.org/10.1371/journal.pone.0221862.t004

Fig 8. Time-series correlation coefficients against reported detrended yields for EPIC-based GGCMs in the top

ten maize producing countries. (a) the fullharm and (b) the harm-suffN simulations. The best performing GGCM

including r value is displayed on the left y-axis. Correlation coefficients for each GGCM and country are provided in

Table K in S1 File.

https://doi.org/10.1371/journal.pone.0221862.g008
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Accordingly, also the permutation of setup domains greatly affects the performance (Fig 9).

The maximum correlation coefficient increases in all countries compared to the basic fullharm

setups of the two GGCMs (Fig 8A), except for Argentina (with slightly lower r due to different

digit precisions in output files used in GEPIC). In various countries, the setup with the highest

correlation coefficient also exceeds the highest value of the EPIC ensemble (Fig 8A), apart

from China and France.

The sensitivity of the GGCM to the selection of setup domains differs considerably among

countries with distinct patterns of positive or adverse impacts (Fig U in S1 File). In the USA,

the correlation is considerably high with any setup whereas the OM and nutrient cycling

parameterization eCoeffN typically provides a higher correlation (Fig U, panel a in S1 File).

The opposite is the case for the corresponding GEPIC component gCoeffN. For China in con-

trast, the performance is overall moderate and most sensitive to soil parameters but also culti-

var definitions (Fig U, panel b in S1 File). In Argentina and India (Fig U, panel c,d in S1 File),

two countries with low reported fertilizer rates (Table K in S1 File), performance shows a very

high sensitivity to setup specifics ranging from r<0 to r>0.8 with lowest results for soil han-

dling from GEPIC (gSoilP). Most setup components however show wide or bimodal distribu-

tions indicating that relative performance of single domains depends on the combination with

other parameters.

Discussion

Effects of harmonization on GGCM agreement

At the pixel level, harmonization expectedly decreases differences between simulated means

and increases correlation among the EPIC-based GGCMs in most parts of the world (Figs 3

and 4), driven by harmonized growing seasons and more importantly increasing conformity

in nutrient supply. Considering that EPIC-GGCMs agree on average in the majority of grid

cells with respect to inter-annual variability (Table I in S1 File) and have low remaining differ-

ences in means if nutrient deficits are eliminated (Table G in S1 File) shows that this element

causes here the greatest impact in GGCM convergence. This is most apparent under irrigated

Fig 9. Time-series correlation coefficients against reported detrended yields for all EPIC-IIASA / GEPIC setup combinations. Results are shown for the top

ten maize producing countries. GGCM names and r values are shown for the best performing setup in each country. 1 = cultivar distribution, 2 = soil parameters,

3 = soil handling, 4 = nutrient cycling coefficient, 5 = hydrologic coefficients, and 6 = management. e = EPIC-IIASA and g = GEPIC.

https://doi.org/10.1371/journal.pone.0221862.g009
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conditions where the agreement in inter-annual variability improves to a minimum level of

significance in 7% of grid cells form default (17%) to fullharm (24%) setups and in >45% from

fullharm to harm-suffN (69%). Yet, substantial differences remain in inter-annual variability

in about one third and CVav is > 30% in more than a quarter of grid cells highlighting that

setup components other than nutrient supply and growing seasons cause lower but still signifi-

cant impacts on yield estimates. The fact that CVav among GGCMs increases in few regions

(e.g. Fig I in S1 File) indicates that data used for harmonization will require further evaluation

and continued improvement to best reflect actual on-ground conditions. E.g., the harmonized

growing seasons for Southern China reflect a side season in winter, while typically summer

maize is planted in the region [87], which may explain the low simulated yields. Vice versa, the

fact that GGCMs exhibit highly diverse response to harmonization implies that also GGCMs

will need to be iteratively adapted to harmonized input data in future experiments, while it was

in this experiment prescribed not to adapt default parameterizations in the harmonized sce-

narios [34].

Effects of setup domains on GGCM agreement and performance

Cultivar distributions. Cultivar distributions (Fig 1) resulted mostly in the scaling of

yields (Fig 7) due to different parameterizations of the upper and lower HI coefficients as PHU

are prescribed by growing season input data and climate. The lower HI boundary is

approached under water stress and hence renders the EPIC model more susceptible to water

deficits during the reproductive growth stage [58], affecting also the magnitude of inter-annual

yield variability but hardly inter-annual dynamics as such (Fig 7). Additional effects may still

incur from cycling of plant residues, whose amounts depend on the fraction of crop removed

at harvest. Planting a cultivar with lower base and optimum temperatures (Fig 1A) contributes

to higher yield estimates from EPIC-IIASA in most of temperate Europe and Russia (not

shown). Overall, the effect of cultivar distributions on GGCM agreement for inter-annual

yield variability (Table J in S1 File) is lower than that of nutrient supply (Table H in S1 File)

but can have substantial impacts in temperate and tropic regions.

Soil attribute estimation, soil handling, and crop nutrient supply. Among the two

EPIC-GGCMs compared in detail, soil parameters differ hardly in primary characteristics, but

considerably in the derived hydrologic properties FC, WP, and KS (Fig C in S1 File), which

can either be input or estimated by EPIC based on various routines (Table 2). These parame-

ters have a substantial effect on inter-annual yield variability (Fig 7E and 7M). They affect

modeled drought stress by defining soil water storage capacity and hence the plant available

water volume, and also modulate nutrient availability from soil OM mineralization, especially

if a dynamic soil profile is assumed. Estimation methods for FC and WP depend on the set of

soil samples for which they were developed [88,89]. At present, there is no single optimal

method for deriving soil hydraulic parameters globally [90] with none of the methods

employed here providing the best performance across the majority of the main producing

countries (Fig 9) and substantially varying sensitivities to these parameters among regions (Fig

U in S1 File).

Whether soils are treated dynamically with transient carry-over of all soil properties or stat-

ically with annual re-initialization of soil properties greatly influences performance (Table 4

and Figs 8 and 9). Especially GEPIC and PEPIC, which have dynamic profile handling and

consider soil erosion processes, exhibit high performance in the least number of countries for

the fullharm setup, which improves if sufficient nutrients are supplied (Table 4). The GGCMs

showing the best performance in terms of total number of countries with good performance in

the fullharm scenario and the lowest increase in the harm-suffN scenario are EPIC-BOKU and

Parameterization-induced uncertainties and setup harmonization in global crop models

PLOS ONE | https://doi.org/10.1371/journal.pone.0221862 September 16, 2019 21 / 36

https://doi.org/10.1371/journal.pone.0221862


EPIC-IIASA, both of which employ static soil profiles. In the case of EPIC-IIASA the setup

results in a dominance of climatic stresses over nutrient supply (Fig O, panel a in S1 File) com-

pared to GEPIC, which has substantial nutrient limitations in low-input regions (Fig O, panel

p in S1 File). The findings are in line with an earlier performance evaluation of the ensemble

investigated here [49], which also showed that GGCMs with a static soil profile exhibited often

better skills in reproducing national inter-annual yield variability.

Hence, while dynamic soil profiles are essential for assessing agricultural externalities such

as soil OM dynamics as well as climate change adaptation and mitigation options [21,22], static

soil profiles and even more so sufficient nutrient supply appear key for obtaining high perfor-

mance in terms of inter-annual yield variability. Obviously, inter-annual dynamics of nutrient

supply from OM dominate—especially in the case of limited fertilizer supply—over inter-

annual climate dynamics, hampering the signal of the latter in inter-annual yield dynamics.

This is perspicuous, as the limited number of pixels in a given country at the employed spatial

resolution cannot be expected to reflect OM dynamics on actual farmland. Rather, the latter

must be assumed to level out at the country-scale to a certain extent, leaving a signal that is to a

larger or smaller extent climate driven [67] and can hence be better picked up by GGCMs not

considering soil dynamics.

This poses a dilemma for GGCM performance evaluation and applications to crop-soil-

management studies. It may lend itself to assess GGCM performance with respect to climate-

driven inter-annual yield variability using a static soil profile and/or sufficient nutrient supply,

but to use dynamic soil profiles and business-as-usual fertilization rates for impact and adapta-

tion assessments. However, the latter requires additional evaluations to ensure the correct

representation and parameterization of relevant processes, which is as of now strongly limited

by lack of globally representative data.

Soil organic matter and hydrologic process parameterization. The parameterizations of

soil OM and nutrient turnover encompass in various cases recommended parameter ranges

[91] and hence a wide range in assumptions on microbial process dynamics. For example,

coefficients for slow to passive humus partitioning (Table 2, parameter 23) or N volatilization

(parameter 26) cover ranges of one to two orders of magnitude. Values for both parameters

are at the edges of recommended ranges [91] and hence bracket extreme cases. Herein, the

parameterization of soil OM-related processes was found to be of considerable importance

concerning GGCM performance, which depends strongly on this set of parameters in few

countries (Fig U in S1 File) but with no clear superiority of either setup from EPIC-IIASA or

GEPIC (Fig 9). Yield magnitudes and inter-annual dynamics are greatly affected as well

depending on which parameter set is selected (Fig 7). Various field and regional studies have

shown that OM partitioning and turnover parameters for CENTURY [60], which is at the core

of the OM cycling routines of EPIC and a range of other crop models such as DSSAT or Day-

Cent, are subject to substantial uncertainty as OM pools are conceptually represented and

hence not feasible to measure [92]. Therefore, these parameters typically require calibration to

regional conditions, which is presently lacking within the ensemble and generally difficult at

the global scale due to limited data availability. GGCM setups may here need to be informed

by cross calibration based on representative site data [93] beyond crop yields.

We found a rather low sensitivity to hydrologic model domains (Figs 7 and 9; Fig T; Fig U

in S1 File). In a recent study, Liu et al. [31] reported that the PET estimation method PM pro-

vides the best results globally within the otherwise constant setup of PEPIC with respect to

national crop yield estimates, albeit with overall minor differences compared to using the HG

method. As for soil OM cycling, methods for hydrologic processes such as algorithms for PET

estimation have often been developed for specific regions or require local calibration for opti-

mal performance [94], which is as well presently not implemented in the ensemble members.
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Crop management operations. The substantial impact of crop nutrient supply as such on

agreement and performance of GGCMs has already been discussed above. General manage-

ment coefficients for irrigation water and fertilizer application (Table 2, parameter 27–29) fol-

low pragmatic assumptions rather than the representation of actual farming systems. Low

trigger thresholds (i.e. high values for parameters 27 and 29) allow for a more rapid plant stress

reduction but cause in the case of suboptimal fertilizer application rates an earlier consump-

tion of the annual maximum rate, especially if also a low trigger threshold is selected for irriga-

tion water application, which can result in stronger leaching. Low fertilizer application

thresholds in contrast do not allow for full plant stress reduction in the harm-suffN scenario.

In contrast to the four other EPIC-based GGCMs, PEPIC was set up with a rigid timing of fer-

tilizer application, which likely contributes to the negative yield trend observed. A study based

on the same GGCM with automatic fertilizer application of the same annual amounts resulted

in overall higher yields [95].

The field operations compared for GEPIC and EPIC-IIASA (Table C in S1 File) differ most

substantially in the removal of plant residue and row spacing, affecting long-term nutrient

availability and potential biomass estimation, both of which depend in practice on socio-eco-

nomic decisions and prevailing practices on-farm or locally.

Representativeness of setups for global agricultural systems

The inherently different assumptions on agro-environmental systems parameterization within

the EPIC-based GGCM ensemble result in greatly varying crop growth conditions and limita-

tions. For EPIC-BOKU the average global yields in the default setup indicate the virtual elimi-

nation of nutrient stresses (Fig 2A). Similarly, EPIC-IIASA exhibits in its fullharm setup

dominant climate stresses (Fig O, panel a; Fig R, panel a in S1 File), which can be assumed to

be highly similar in the default setup that is based on nearly identical input data (Text C in S1

File) and shows only slightly lower global average yields (Fig 2A). For GEPIC in contrast, pro-

ductivity on large parts of the global cropland–especially in the tropics—is limited by nutrient

deficits (Fig R, panel b in S1 File), which can also be expected for PEPIC based on the identical

cultivar distribution, similar global average yield levels (Fig 2A), and the consideration of

dynamic soil handling (Table 2). EPIC-TAMU presents a compromise including soil OM

dynamics–with rather rapid turnover rates and moderate N volatilization (Table 2)—over time

but no water erosion. The substantial differences in nutrient deficits and associated climate

sensitivity can hence also explain why in two earlier studies EPIC-BOKU responded more sen-

sitively to climatic change than GEPIC [6], and EPIC-BPOKU and EPIC-IIASA provided

more explained variance for weather-induced yield variability than GEPIC [96]. Thus, the

large variation in yield projections from various GGCMs seen in e.g. Rosenzweig et al. [6] for a

smaller ensemble may be as much due to setup as to model structural differences.

However, due to lack of spatial parameterizations except for a limited number of cultivars,

none of the GGCMs can be expected to represent a globally optimal setup. The improved

GGCM performance if setup domains are permutated (Fig U in S1 File and Fig 9) and the

presence of all EPIC-based GGCMs among the top performing GGCMs (Fig 8 and Table 4)

highlight that no globally uniform parameterization performs optimally for all countries.

Instead, the EPIC ensemble allows for covering a range of uncertainties that may exist in a

given pixel or the sub-grid scale [97] below the spatial resolution of 0.5˚ x 0.5˚, e.g. through the

representation of low-input or high-input agricultural systems and associated plant growth

limitations, which coexist in close proximity especially in transition countries [98]. The diver-

sity in cultivars, soil types, and tillage regimes potentially occurring at the sub-grid level, how-

ever, cannot be assumed to be fully covered by the range of setups present in the ensemble. In
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addition, all GGCMs assume high-input agriculture in regions with high reported average fer-

tilizer application rates (Fig E in S1 File), which neglects potential imbalances and heterogene-

ity in input systems present in these regions. For a more targeted representation of agricultural

systems within the ensemble, setups may rather need to be defined in a systematic way to

cover distinct agricultural production systems for impact studies.

Increasing the spatial resolution of input data may suggest a viable alternative to bracketing

uncertainties at the sub-grid scale. Although this has been shown to improve performance or

at least affect yield estimates, especially in environmentally heterogeneous regions with respect

to soils, climate, and topography (e.g. [29,43,99]), it can at present not be expected to improve

the representation of management practices. Global data on cultivar distributions even

between broad regions are lacking, which requires assumptions by modelers (cf. Fig 1). The

same is the case for tillage practices including residue management, which may also vary in

time subject to farmers’ management preferences, economic opportunities, and incentives for

specific agricultural practices. Albeit spatial data on representative management practices such

as tillage systems are in the process of being compiled globally [100] and remote sensing prod-

ucts may allow for spatial attribution of field management practices in the future [101,102],

employing an ensemble to bracket uncertainties appears the most robust approach meanwhile.

Nevertheless, increasing the spatial resolution will be required to better reflect actually culti-

vated soils [27] or microclimate [99] at the sub-grid scale. However, the fact that high perfor-

mance could be achieved herein for the majority of countries (Figs 8 and 9; Fig AB in S1 File

and Table 4) indicates that the presently employed resolution is in most regions sufficient for

obtaining robust nationally weighted estimates.

The EPIC-based GGCMs in the context of a wider ensemble

Performing key analyses also for a wider ensemble of six GGCMs based on other core models

(Text D; Figs U to AE and associated tables in S1 File) shows in various aspects contrasting

results. While global average yield estimates converge among the EPIC-based GGCMs, they

diverge in the wider ensemble (Fig V in S1 File). Importantly, the spread among EPIC-based

GGCMs and the non-EPIC-based in the default setup is highly comparable indicating that the

differences in input data, parameterization, and management assumptions are for absolute

yield levels of similar importance as core model selection itself. The wide range in estimates for

non-nutrient limited yield potentials (Fig V, panel f in S1 File) can be attributed to very high

or low cultivar productivity in specific GGCMs due to core model processes as such and culti-

var parameterizations. The increase in absolute yields from the fullharm to harm-suffN sce-

nario, which is substantial for some GGCMs as indicated by the threefold increase for

PEGASUS, shows that also most of the non-EPIC-based GGCMs are moderately to highly

responsive to nutrient supply, but that their sensitivities vary greatly.

Similar to absolute yield estimates, the range of correlation coefficients of global mean

inter-annual yield variability compared to FAOSTAT reported data increases with harmoniza-

tion for the non-EPIC-based sub-ensemble (Fig AD in S1 File) due to decreasing skill for some

GGCMs. The EPIC-based sub-ensemble has here a comparably constant range from default to

fullharm and a narrower in the harm-suffN scenario. Both metrics indicate that harmonization

tends to improve the agreement among GGCMs with the same structure but not among struc-

turally different GGCMs, which vary in their sensitivities to specific setup components such as

nutrient inputs and have partly been calibrated in their default setups to reflect reported crop

yields [49]. Except for the default scenario, these results are in line with a recent field-scale

study finding that crop model structure has a greater impact on deviations than parameteriza-

tion [103]. Yet, the default scenario is not comparable here, as ground conditions such as
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management and soil are typically well known at the field scale but pose substantial uncer-

tainty in global studies.

A common finding across the whole ensemble is that GGCM performance for major pro-

ducing countries is highest for GGCMs with either a static soil profile or sufficient nutrient

supply and in most cases performance of individual GGCMs is higher with sufficient nutrient

supply compared to the fullharm setup (Fig AB in S1 File). E.g., PEGASUS only considers

hydrology in its soil module but has a multiplicative plant stress impact combining tempera-

ture, water, and nutrient limitations from insufficient fertilizer application [104] resulting in

higher performance in most countries in the harm-suffN setup (Fig AB in S1 File). As pointed

out above, this suggests that GGCMs should not only be evaluated for business-as-usual fertil-

izer application but also sufficient nutrient supply if inter-annual yield variability is the bench-

mark. The increasing spreads in mean yields and correlations with reported yields (Fig V and

Fig AD in S1 File), partly caused by very low yields or negative trends in yields, furthermore

suggest that while most GGCMs have been positively evaluated in their default setups and

partly been calibrated to reproduce reported yields, the resultant default parameterizations

may not be compatible with the harmonization approach taken here. This suggests that

harmonization should be an iterative process with re-evaluation of GGCMs.

The agreement in inter-annual yield variability among GGCMs at the pixel level is far lower

for the whole ensemble (Fig W in S1 File) or the non-EPIC based GGCMs (Fig Y in S1 File)

than for the EPIC-based GGCMs alone and only shows a trend in improvement with increas-

ing harmonization (Table M in S1 File), which is not evident if the EPIC-based GGCMs are

not considered (Table O in S1 File). The substantial divergence even in the harm-suffN sce-

nario, where under non-nutrient limited conditions plant phenology and photosynthesis dom-

inate biomass accumulation and yield formation, indicates that these processes—differing

greatly among GGCMs and core models (Table A in S1 File)—exhibit differences that exceed

the impact of nutrient supply in the EPIC-based sub-ensemble (Table I in S1 File). Spatially,

the agreement is best in temperate and cold regions of the northern hemisphere with clear cli-

matic constraints of growing seasons, which impacts planting and harvest in the default setups

but may also affect cultivar definitions carried over to the harmonized setups. Similar to the

EPIC-based GGCMs, agreement is poor across the tropics. Interestingly, the non-EPIC-based

GGCMs also show little agreement in arid regions, indicating substantial differences in crop

water use and/or soil hydrology, which can result either from process implementations in the

core models or from divergence in soil input data.

Albeit GGCMs have partly been harmonized in this study, it is at this point not feasible to

attribute differences in GGCM outputs to specific setup domains ranging from input data to

parameterization and process representation. A basic evaluation (Fig AC in S1 File) indicates

that GGCMs with site-based core models and with prescribed leaf area development have a ten-

dency towards higher skill in reproducing average global inter-annual yield variability. However,

due to the sample bias caused by the multiple EPIC-based GGCMs, robustly identifying model

routines and structures providing high skill will require more scrutiny. As pointed out below,

this will also require further harmonization or in-depth analyses for contrasting locations.

Finally, evaluations of the multi-GGCM mean (MGM) for simulated vs reported global

inter-annual yield variability show that the MGM has typically a higher score than individual

GGCMs across (sub-)ensembles and scenarios (Fig AD in S1 File), analogously to earlier find-

ings for an ensemble of structurally different field-scale wheat models [19]. An exception

occurs for the harmonized setups of the EPIC-based sub-ensemble in which some GGCMs

have higher skill. The highest time-series correlation coefficient occurs for the MGM of the

whole ensemble in the default and harm-suffN setups, but is marginally surpassed by the

MGM of the non-EPIC-based GGCMs in the fullharm scenario. These evaluations indicate
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that the MGM of the whole ensemble has a higher gain from including GGCMs with structural

differences rather than multiple configurations of the same core model. The resilience of

MGM for the whole ensemble to exclusion of specific GGCMs (Fig AE in S1 File) furthermore

shows that the incompatibility of single GGCMs with harmonization does hardly affect the

ensemble mean.

Conclusions for global crop model and ensemble applications

Extension of sensitivity analyses and model calibration. Our findings highlight the

importance of parameter choices in global-scale crop modeling studies that have not received

much attention so far. While recent years have seen a vast growth in sensitivity analyses and

calibration efforts of crop models at the field, local, and regional scales [103,105–107] with

increasing methodologic sophistication [108], GGCMs have been subject to such studies only

to a very limited extent (e.g. [109,110]). In all cases, a focus is typically on directly plant growth

related parameters (e.g. photosynthesis, leaf development, or temperature response) or these

are identified as the most sensitive variables.

Acknowledging the narrow parameterization of cultivars herein, our findings show that

other setup components such as soil processes and parameters have substantial impact on

yield estimates (Fig 7; Fig T; Fig U in S1 File). Such parameter domains should hence be

included in future sensitivity analyses in order to derive a full picture of model sensitivity glob-

ally. The same applies to calibration efforts as uncertainties related to agro-environmental pro-

cesses and management are otherwise projected unto plant or cultivar coefficients and will

likely affect impact assessments or evaluations of adaptation measures. At the regional scale,

the sensitivity of EPIC to soil and management parameters alone has been evaluated in a very

recent impact study addressing climate change and soil degradation in Europe [33], indicating

high sensitivity to soil and management parameters, which partly outweigh climate impacts.

Bracketing uncertainties and potential for further harmonization. The GGCM param-

eterizations by individual modeling groups do not reflect poor vs. careful parameterization but

the lack of reference and input data on many aspects of agricultural production systems, such

as soil and crop management. The uncertainty in management and soil parametrization is a

problem that is specific to large-scale and global gridded crop model applications, while field-

scale assessments have typically precise information on management practices, variety charac-

teristics and soil properties. Still, the importance of these parameters for simulation results, as

shown here, demonstrates that simple extrapolation of a small set of site-specific parameteriza-

tions is not possible. Global-scale applications are thus challenged to improve on the represen-

tation of management and soil conditions. In addition, applications of crop models at all scales

need to better understand and represent the dynamics in environmental (e.g. soil degradation)

and management (e.g. variety selection) conditions. Thus, employing a large GGCM ensemble

with substantial differences in setups presents an asset as it allows for covering some of the

uncertainties in the range of possible environment x management conditions, but the manage-

ment aspects need to be better represented in models by process implementation and better

informed by suitable input data.

Whether to further harmonize GGCM setups for ensemble runs is primarily a question of

whether (a) GGCMs are being evaluated with respect to procedural differences (comparison

studies) or (b) ranges of agro-environmental conditions are to be covered (impact assess-

ments). New datasets relevant for GGCMs are continuously becoming available and may aide

in reducing or attributing uncertainties within the ensemble for case (a).

Recently, Gbegbelegbe et al. [111] have presented a global distribution of representative

wheat cultivars for crop modelling based on extensive data on physiology and global agro-
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climatic zoning. The same is in principle feasible for maize using agro-climatic mega-environ-

ments [112]. Cultivar specifications, however, are difficult to translate between models and

will therefore require new data management tools as proposed by Porter et al. [113]. Global

tillage practices–albeit not relevant for all GGCMs (Table A in S1 File)—are presently being

compiled [100] and will likely become publically available in the near future.

Soil properties lend themselves to be harmonized to avoid differences in nutrient supply in

low-input regions from SOM mineralization and especially differences in soil hydrology once

appropriate data become available. The derived soil parameters FC, WP, and KS, which were

here shown to play a major role in drought response and soil microbial processes, are used

directly or have a counterpart in all GGCMs. For optimal results, they need to be estimated

based on regionally calibrated functions and algorithms [90]. Albeit a new global soil database

provides these estimates, they were derived based on soil samples foremost from sub-Saharan

Africa and can hence not be considered representative globally (update of [114]), while a data-

set specifically calibrated for Europe exists [115]. Spatially parameterizing microbial turnover

of soil OM and nutrients in turn appears not feasible in the near term due to lack of compre-

hensive field data.

Implications for the wider ensemble and ensemble studies. Several of the conclusions

stated above also apply to the wider ensemble of this study, such as the potential for further

harmonization of input data and setups on the one hand, but also the requirement for iterative

GGCM parameterization and re-evaluation after harmonization on the other. I.e., local and

global increases in deviations with harmonization underpin that this is not a trivial process.

Our results suggest that common input data, foremost growing seasons, will require more

scrutiny to ensure they reflect the most common practices. Within this study, the protocol

mandated that default parameterizations remain constant among scenarios to study the effect

of harmonization without confounding impacts of adjusted parameters [34]. Yet, unantici-

pated GGCM behavior, e.g. resulting in lower than expected yields or negative yield trends

despite sufficient nutrient supply (Fig F, Fig W, Table L in S1 File), suggests that in future stud-

ies employing harmonized ensembles, GGCMs should be re-evaluated after harmonization to

ensure valid responses to changes in input data and crop management. Noteworthy, our find-

ings are robust against excluding individual GGCMs (Text D in S1 File).

Further findings for the EPIC-based sub-ensemble will become relevant for other GGCMs

with the progressing inclusion of crop-soil-management-related processes. The majority of

non-EPIC-based GGCMs shows a moderate to strong response to nutrient supply from the

fullharm to harm-suffN scenario, which can be substantial as in the case of PEGASUS. Accord-

ingly, the progressing inclusion of agro-environmental processes such as transient nutrient

cycling [39–42], presently only accounted for in the EPIC-based GGCMs within this ensemble,

bears the potential to further exacerbate differences in GGCM outputs.

Evaluations of the EPIC-based sub-ensemble show that the inclusion of multiple configura-

tions of the same core model has several merits in bracketing uncertainties. However, the

MGM performance for different sub-ensembles (Text D in S1 File; Fig AE in S1 File) high-

lights that the ensemble mean has a higher gain from including structurally distinct GGCMs

compared to varying configurations of the same core model. Yet, the range of GGCM skills

and their divergence with harmonization suggest that GGCM setups are of high importance as

well and performance of both single GGCMs and ensemble means are typically highest in the

default setups for which most GGCMs have originally been set up and evaluated.

Investigating the role of specific model processes or process conceptualizations in detail is

beyond the scope of this study and the underlying experiment. Grouping GGCMs by basic

characteristics suggests higher skill in reproducing global average inter-annual yield dynamics

for site-based GGCMs and those with prescribed phenology. However, this will need to be
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studied in more detail across scales in specifically designed experiments covering both parame-

terizations and process representations based on different conceptualizations.

Supporting information

S1 File. The supplementary information (SI) is provided in one single PDF file. Text A.

Relevant routines of the EPIC model. Text B. Differences between EPIC model versions v0810

and v1102. Text C. Description of EPIC-based GGCMs. Text D. Evaluations of the wider

ensemble. Table A. Relevant characteristics of GGCMs in this study based on Müller et al.

[30]. Table B. Legend for Table 2 in main paper with brief explanation for parameters differing

among EPIC-based GGCMs. Table C. Crop management operations of EPIC-IASA and

GEPIC. Table D. Parameterization of different maize cultivars used in the GGCMs as shown

in Fig 1 of the manuscript with corresponding coloring of column headings. Table E. Relative

spread of maize yield estimates measured as yields of the highest estimate in relation to yields

of the lowest estimate in Fig 2 of the main paper. Table F. Statistical coefficients for linear

regressions of yield estimates over time in Fig 2 of the main article and in Fig F and mean

error [t ha-1] compared to reported yields. Table G. Quantiles of coefficient of variation [%]

among EPIC-GGCMs for grid-wise maize yield estimates (Fig 3 in main article) depending on

the setup and management scenarios (see Table 1 in main article). Table H. Same as Table G

but excluding EPIC-TAMU. Table I. Fractions of grid cells [%] in which the median time

series correlation among the EPIC-based GGCMs (Fig 4 in main article) fulfils a certain level

of significance. Table J. Same as Table I but excluding EPIC-TAMU. Table K. Time-series

correlation coefficient r for each GGCM in the ten major maize producing countries for the

fullharm and harm-suffN scenarios (Table 1 in main paper) and annual N fertilizer application

rates for maize in each country. Table L. Statistical coefficients for linear regressions of yield

estimates (not shown) corresponding to global average yields in Fig V and mean error [t ha-1]

compared to reported yields. Table M. Fractions of grid cells [%] in which the median time

series correlation among all GGCMs (Fig W) fulfils a certain level of significance. Table N.

Same as Table M but excluding EPIC-TAMU, LPJmL, and LPJ-GUESS. Table O. Fractions of

grid cells [%] in which the median time series correlation among the GGCMs, excluding the

EPIC-based ones, (Fig Y) fulfils a certain level of significance. Table P. Same as Table O but

excluding LPJmL and LPJ-GUESS. Fig A. Maize yield estimates of EPIC v0810 and EPIC

v1102 for four contrasting locations. Fig B. Schematic representation of decadal GEPIC runs

with dynamic soil profile and erosion for (a) high nutrient input and (b) low nutrient input

conditions. Fig C. Density distributions of key soil parameters in the original ISRIC WISE

dataset used in GEPIC and the processed soil parameters used in EPIC-IIASA based on WISE.

Fig D. Major Koeppen-Geiger climate regions according to Peel et al. [33] based on the climate

data used in this study. Fig E. (a) Nitrogen and (b) phosphorus fertilizer application rates used

in the fullharm setup [34]. Fig F. Same as Fig 2 in the main manuscript but with linear regres-

sions included but without ensemble mean and reported yields. Fig G. Same as Fig 3 in the

main body but excluding EPIC-TAMU. Fig H. Same as Fig 4 in the main body but excluding

EPIC-TAMU. Fig I. Long-term maize yield estimates for the EPIC-based GGCMs in two spa-

tial units at administrative level 2 with increase in CVav after harmonization in Fig 3 of the

main body. Fig J. Median time-series correlation coefficient r for maize yields among EPIC-

based GGCMs compared to binned fertilizer application rates in the fully harmonized man-

agement scenario (fullharm) with sufficiently irrigated (a-d) or rainfed (e-h) water supply in

each grid cell of four major climate regions. Fig K. Coefficient of variation (CVav) among

maize yield estimates in the harm-suffN scenario in grid cells in which either all GGCMs plant

the high-yielding cultivars 1 or 2 (Fig 1 in main paper) or in which at least four GGCMs plant
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the low-yielding drought-sensitive cultivar 4 or in which cultivar types are mostly mixed. Fig

L. Median time-series correlation coefficient in the harm-suffN scenario in grid cells in which

either all GGCMs plant the high-yielding cultivars 1 or 2 (Fig 1 in main paper and Table D) or

in which at least four GGCMs plant the low-yielding drought-sensitive cultivar 4 or in which

cultivar types are mostly mixed. Fig M. Frequency distribution of time-series correlation coef-

ficients among EPIC-based GGCMs in each grid cell and for each management scenario. Fig

N. Global average rainfed maize yields over a 29 year period for 64 setup combinations based

on the EPIC-IIASA and GEPIC setups (Table 3 in main article). Fig O. Box-and-whisker plots

of global averaged growth stresses over a 29 year period for 64 setup combinations based on

the EPIC-IIASA and GEPIC setups under rainfed conditions (Table 3 in main paper). Fig P.

(a) Monthly total biomass and (b-c) stress occurrence for a single year in a randomly sampled

grid cell of the US Corn Belt differing the managements of EPIC-IIASA and GEPIC (eMa-

nage/gManage) with otherwise identical setups (included in Fig 7A of the main article) and a

static soil profile (eSoilP). Fig Q. Annual (a-c) yields, (d-f) stresses, (g-i) water fluxes, and (j-l)

nitrogen fluxes for a randomly sampled grid in Ukraine with low fertilizer application for

three EPIC-GGCM setups differing in soil parameters (SoilD) and OM/nutrient cycling

parameterization (CoeffN) using dynamic soil profile handling (gSoilP). Fig R. Dominant

stress per grid cell averaged over the simulation period in four selected setups shown under-

neath each panel. Fig S. Correlation matrix for the 64 setup permutation of EPIC-IIASA and

GEPIC. Colour indicates the correlation coefficient r as shown on the right scale, circle sizes

represent the level of significance. Fig T. Distributions (violins) and box-and-whisker plots of

correlation coefficients among all setup combinations of EPIC-IIASA and GEPIC (Table 3 in

main article) aggregated by setup domains. Fig U. Distributions (violins) and medians (hori-

zontal lines) of the time series correlation coefficient r of simulated and reported yields for

each setup domain (Table 3 in main article) in (a) USA, (b) China, (c) Argentina, and (d)

India. Fig V. Global average area-weighted maize yields and 95% confidence interval of the

mean for EPIC-GGCMs and non-EPIC-based GGCMs for three management scenarios. Fig

W. Median of time-series correlation coefficient r for maize yield estimates among the whole

GGCM ensemble for each of the six crop management scenarios defined in Table 1 of the

main article. Fig X. Same as Fig W but excluding EPIC-TAMU, LPJmL, and LPJ-GUESS. Fig

Y. Median of time-series correlation coefficient r for maize yield estimates among the GGCM

ensemble excluding the EPIC-based GGCMs for each of the six crop management scenarios

defined in Table 1 of the main article. Fig Z. Same as Fig Y but excluding LPJmL and

LPJ-GUESS. Fig AA. Frequency distributions of time-series correlation coefficients in each

grid cell for all GGCMs and setup scenarios (Table 1 in main article). Solid and dashed lines at

the top of each panel indicated the location of the major peak in the distribution for rainfed

(dashed) or sufficiently irrigated (solid) simulations of each management scenario (Table 1 in

main article). Fig AB. Time-series correlation coefficients for all GGCMs with the fullharm

and harm-suffN scenarios (x-axis) in the top ten maize producing countries (right y-axis) and

the best performing GGCM/setup combination including the r value (left y-axis). Fig AC.

Time-series correlation coefficients for GGCMs grouped by basic characteristics (Table A) for

the three setup scenarios. Fig AD. Box-and-whisker plots of time-series correlation coefficients

for single GGCMs against FOASTAT global reported yields grouped into the (sub-)ensembles

“All GGCMs”, “EPIC-based GGCMs”, and “non-EPIC-based GGCMs” for each setup scenario

(a-c). Fig AE. Box-and-whisker plots of time-series correlation coefficients for permutations

of multi-GGCM means excluding one GGCM at a time against FOASTAT global reported

yields for each setup scenario (a-c).
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2. Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB. A Global and Spatially Explicit

Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLOS

ONE. 2013; 8: e57750. https://doi.org/10.1371/journal.pone.0057750 PMID: 23460901

3. Balkovič J, van der Velde M, Skalský R, Xiong W, Folberth C, Khabarov N, et al. Global wheat produc-

tion potentials and management flexibility under the representative concentration pathways. Global

and Planetary Change. 2014; 122: 107–121. https://doi.org/10.1016/j.gloplacha.2014.08.010

4. Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, et al. Constraints and potentials of

future irrigation water availability on agricultural production under climate change. PNAS. 2014; 111:

3239–3244. https://doi.org/10.1073/pnas.1222474110 PMID: 24344283

5. Folberth C, Yang H, Gaiser T, Liu J, Wang X, Williams J, et al. Effects of ecological and conventional

agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate

change. Environ Res Lett. 2014; 9: 044004. https://doi.org/10.1088/1748-9326/9/4/044004

6. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of

climate change in the 21st century in a global gridded crop model intercomparison. PNAS. 2014; 111:

3268–3273. https://doi.org/10.1073/pnas.1222463110 PMID: 24344314

7. Müller C, Elliott J, Chryssanthacopoulos J, Deryng D, Folberth C, Pugh TAM, et al. Implications of cli-

mate mitigation for future agricultural production. Environ Res Lett. 2015; 10: 125004. https://doi.org/

10.1088/1748-9326/10/12/125004

8. Deryng D, Elliott J, Folberth C, Müller C, Pugh TAM, Boote KJ, et al. Regional disparities in the benefi-

cial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change. 2016; 6:

786–790. https://doi.org/10.1038/nclimate2995

Parameterization-induced uncertainties and setup harmonization in global crop models

PLOS ONE | https://doi.org/10.1371/journal.pone.0221862 September 16, 2019 30 / 36

https://doi.org/10.1016/S0304-3800(03)00146-7
https://doi.org/10.1016/S0304-3800(03)00146-7
https://doi.org/10.1371/journal.pone.0057750
http://www.ncbi.nlm.nih.gov/pubmed/23460901
https://doi.org/10.1016/j.gloplacha.2014.08.010
https://doi.org/10.1073/pnas.1222474110
http://www.ncbi.nlm.nih.gov/pubmed/24344283
https://doi.org/10.1088/1748-9326/9/4/044004
https://doi.org/10.1073/pnas.1222463110
http://www.ncbi.nlm.nih.gov/pubmed/24344314
https://doi.org/10.1088/1748-9326/10/12/125004
https://doi.org/10.1088/1748-9326/10/12/125004
https://doi.org/10.1038/nclimate2995
https://doi.org/10.1371/journal.pone.0221862


9. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, et al. Modelling the role of agricul-

ture for the 20th century global terrestrial carbon balance. Global Change Biology. 2007; 13: 679–706.

https://doi.org/10.1111/j.1365-2486.2006.01305.x

10. Liu J, Williams JR, Zehnder AJB, Yang H. GEPIC–modelling wheat yield and crop water productivity

with high resolution on a global scale. Agricultural Systems. 2007; 94: 478–493. https://doi.org/10.

1016/j.agsy.2006.11.019

11. Fader M, Rost S, Müller C, Bondeau A, Gerten D. Virtual water content of temperate cereals and

maize: Present and potential future patterns. Journal of Hydrology. 2010; 384: 218–231. https://doi.

org/10.1016/j.jhydrol.2009.12.011

12. Stehfest E, Heistermann M, Priess JA, Ojima DS, Alcamo J. Simulation of global crop production with

the ecosystem model DayCent. Ecological Modelling. 2007; 209: 203–219. https://doi.org/10.1016/j.

ecolmodel.2007.06.028

13. Liu W, Yang H, Ciais P, Stamm C, Zhao X, Williams JR, et al. Integrative Crop-Soil-Management

Modeling to Assess Global Phosphorus Losses from Major Crop Cultivations. Global Biogeochemical

Cycles. 2018; 32: 1074–1086. https://doi.org/10.1029/2017GB005849
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